SVEUČILIŠTE U ZAGREBU
GRAFIČKI FAKULTET

BERNARDA BANOVIĆ

DIZAJN I STRATEGIJA ZAŠTITE OKOLIŠA U PROIZVODNJI AMBALAŽE

DIPLOMSKI RAD

ZAGREB, 2012.
DIZAJN GRAFIČKIH PROIZVODA,
GRAFIČKA TEHNOLOGIJA

DIZAJN I STRATEGIJA ZAŠTITE OKOLIŠA U PROIZVODNJI AMBALAŽE

DIPLOMSKI RAD

Mentor: Doc. dr. sc. IVANA BOLANČA MIRKOVIĆ
Student: BERNARDA BANOVIĆ

ZAGREB, 2012.
SAŽETAK

U radu je objašnjen dizajn i strategija zaštite okoliša u proizvodnji ambalaže. Suvremenu proizvodnju ambalaže odlikuje veliki izbor ambalažnog materijala i oblika ambalaže, a kako ambalaža ima kratki životni vijek neophodno je osiguravati mjere smanjivanja proizvodnje ambalaže te spriječavanje nastanka ambalažnog otpada. Razmatrana je i metoda „životni ciklus proizvoda“.

Ambalažni materijali i njihov otpad imaju mnogobrojne štetne utjecaje na okoliš. Neki od tih utjecaja su povezani sa samim procesom proizvodnje ambalaže, sakupljanjem ambalažnog otpada te naknadnim odlaganjem i zbrinjavanjem. Ambalaža tako može sadržavati neke opasne supstance kao što su PVC ili teški metali koji se mogu pretvoriti u rizik za okoliš.

Ključne riječi
ambalaža, otpad, okoliš, dizajn.

ABSTRACT

After introduction in this work a design strategy of pollution prevention in package production is explained. Recent package production uses great assortment of package materials and package designs, and because of a short package lifetime it is necessary to provide measures of package production reduction and pollution prevention. The method discussed Life Cycle Assessment.

Packaging and packaging waste can have a number of impacts on the environment. Some of these impacts can be associated with the manufacturing processes, the collection of packaging waste and its subsequent treatment or disposal. In addition packaging may contain some critical substances, PVC and heavy metals which may pose a risk to the environment.

Key words
packaging, waste, environment, design.
SADRŽAJ

1. UVOD .. 1

2. DIZAJN I STRATEGIJA ZAŠTITE OKOLIŠA U PROIZVODNJI AMBALAŽE.. 2
 2.1. Zeleni dizajn: Dizajn za distribuciju i pakiranje... 2
 2.1.1. Vrste pakiranja ... 2
 2.1.2. Rješenje održivog pakiranja ... 2
 2.1.3. Težinsko prikladan dizajn ... 4
 2.1.4. Raslojavanje .. 5
 2.1.5. Holistički zeleni dizajn: Lemnis Lighting .. 9
 2.2. Ekološki održiv dizajn ... 10
 2.2.2. Ekološki održiv dizajn orijentiran na alate ... 10
 2.2.2.1. Ecodesign: Obećavajući pristup održivoj proizvodnji i potrošnji .. 12
 2.2.2.2. Alat za dizajn za eko efikasnost ... 12
 2.2.2.3. SOD komplet alata za dizajn orijentiranog prema izdrživosti 12
 2.2.3. Evaluacija održivosti u istraživanju i praksi dizajna 13
 2.2.3.1. Evolucija održivosti u dizajnu ... 15
 2.2.3.2. Izbor resursa sa niskim utjecajem .. 15
 2.2.3.3. Dizajn životnog ciklusa proizvoda ... 17
 2.2.3.4. Sustav dizajna za eko učinkovitost ... 17
 2.2.3.5. Kriteriji i smjernice dizajna ... 18
 3. PLASTIKA I OKOLIŠ .. 19
 3.1. Funkcije pakiranja .. 21
 3.2. Prednost primjene plastičnog pakiranja .. 22
 3.3. Tipovi plastičnih pakiranja ... 24
 3.3.1. Polietilen visoke gustoće .. 24
 3.3.2. Polietilen niske gustoće i liner polietilen niske gustoće 26
 3.3.3. Polipropilen ... 27
1. UVOD

Uloga ambalaže je da štiti sadržaj, reklamira proizvod te da informira kupca. Ambalaža mora štiti sadržaj jer u suprotnom može doći do njegovog oštećenja. Suvremenu proizvodnju ambalaže odlikuje veliki izbor ambalažnog materijala i oblika ambalaže. Ambalaža ima kratki životni vijek, pretpostavlja se da u roku od godine dana odlazi s tržišta i uskoro postaje otpad kojeg je potrebno zbrinuti. Odbačena ambalaža može biti industrijski otpad, otpad u trgovini, a najveći dio odbačene ambalaže postaje sastavni dio smeća. Rastući problem zbrinjavanja otpada utječe na to da se količina potrebne ambalaže drži na minimumu. Briga o otpadu počinje od pojedinca u radnoj sredini, a postaje i važan segment djelovanja velikih tvrtki u smislu razvrstavanja i zbrinjavanja otpada.

Tijekom životnog vijeka ambalaže, od osiguravanja sirovina, preko proizvodnje zatim korištenja, obrade i zbrinjavanja, nakon što postane otpad, postoje raznovrsni utjecaji na okoliš. Neophodno je osiguravati mjere smanjivanja proizvodnje ambalaže te spriječavanja nastanka ambalažnog otpada kako bi se ti utjecaji smanjivali te osigurala ušteda sirovina, energije i prostora na odlagalištu. Potrebna je uspostava odvojenog sakupljanja ambalažnog otpada kako bi se stvorili uvjeti za recikliranje te unaprijeđenje sustava prikupljanja i vođenja podataka o otpadu.

Ustanovljena je metodologija „procjena životnog ciklusa LCA“ koja procjenjuje utjecaj na okoliš ulaza i izlaza svih procesa u svim stadijima životnog ciklusa koje se odnose na učinak proizvoda.

Tijekom rada opisat će se tipovi plastičnih pakiranja, metode izrade i njihovo pojavljivanje u krutom komunalnom otpadu, pozitivni i negativni utjecaji na okoliš povezani s njihovom upotrebom i odlaganjem te izmjene na pakiranjima koje mogu smanjiti okolišne učinke.
2. DIZAJN I STRATEGIJA ZAŠTITE OKOLIŠA U PROIZVODNJI AMBALAŽE

2.1. ZELENI DIZAJN: DIZAJN ZA DISTRIBUTICIJU I PAKIRANJE

2.1.1. VRSTE PAKIRANJA

Inženjeri pakiranja svoj svijet često razdvajaju na primarno i sekundarno pakiranje. Primarno pakiranje je sloj koji je najbliži proizvodu. Njegova funkcija može uključivati identifikaciju proizvoda, zaštitu od oštećenja, držanje više komponenata proizvoda zajedno ili privlačenje pažnje kupaca.\(^1\)

Sekundarno transportno pakiranje inače služi u svrhu zadržavanja više dijelova proizvoda na okupu i njihovu zaštitu za učinkovit transport. Sekundarno pakiranje je najčešće odbačeno prije nego li proizvod dođe do krajnjeg korisnika. Primarni i sekundarni načini pakiranja mogu sadržavati više slojeva i materijala. Naprimjer, ako je proizvod tekući umak, primarno pakiranje može uključivati staklenku, printanu etiketu s adhezivom na stražnjoj strani i printanim metalnim poklopcem. Sekundarno pakiranje može uključivati kartonsku kutiju s printom na vanjskoj strani, pregrade od iverice i komponente za ljepljenje kutije.

Ako je proizvod osobno pismo onda je primarno pakiranje omotnica. Dakle, tu nema sekundarnog pakiranja. Ako je proizvod brošura firme koja će biti podijeljena od trgovaca, onda sekundarno pakiranje može biti plastičan omot za set od 100 brošura, kutija od valovitog kartona za spremanje višebrojnih setova i plastični mjehuričasti omot za popunjavanje praznih prostora unutar kutija. U ovom slučaju nema primarnog pakiranja.

2.1.2. RJEŠENJE ODRŽIVOG PAKIRANJA

U Ujedinjenom Kraljevstvu, tvrtka zvana Greenbottle(1) razvila je zanimljivo rješenje prolaznog pakiranja, koje je sve više održiva alternativa HDPE plastičnom bokalu za mlijeko. Jedinstveni spremnik se sastoji od dva dijela: vanjska ljuska napravljena je od papirnate pulpe i tankog fleksibilnog sloja napravljenog od biopolimera na bazi kukuruza. Ljuska daje ambalaži krutost, a sloj liner drži tekućinu i čuva je da se ne pokvari. Dva dijela se lako odvajaju tako da kupci lako mogu reciklirati proizvod u papirnatu ljusku i kompost-sloj Liner.

Trajno pakiranje nastoji ispuniti nekoliko „života“ prije no što bude odbačeno. Da bude u tom uspjeho, pakiranje mora imati snažnu postojanost vrijednosti tako da ljudi žele biti u interakciji s njim u nekom dužem periodu. Sistem trajnog pakiranja zahtijevaju industrijsku standardiziranost, tako da više proizvođača može dijeliti centraliziran sustav prikupljanja ili čvrsto kontroliran krug distribucije i sakupljanja.

Mljekara obitelji Straus u Sjevernoj Kaliforniji razvila je učinkovito rješenje trajnog pakiranja za organske mliječne proizvode. Mljeko se prodaje u staklenim bocama koje zahtijevaju depozit od 1,25 dolara. Boce su bile fantastičan način odskakanja Straus brenda od ostalih, osiguravajući tako prepoznatljivo ime i lojalnost kupaca. Sistem funkcionira zbog više razloga. Straus prodaje vrhunski organski proizvod, a njegova ciljna klijentela je voljna platiti nešto što smatraju pozitivnim utjecajem za okoliš. Isto tako, mali trgovci su pristali na sakupljanje pologa na svaku bocu i korištene boce koje kupci donesu natrag u trgovinu. U prosjeku jedna boca se iznova upotrijebi osam puta i povratna stopa je oko 95%.

Mljekara obitelji Straus želi prikazati važnost izdržljivosti trajnog pakiranja. Pakiranje je jedinstveno, visoke kvalitete, lijepo dizajnirano i relativno skupo što sve skupa potiče ljude da ga koriste iznova. Boce su teške i zahtijevaju značajnu količinu energije za proizvodnju.
Tvrtka dostavlja svoj proizvod na relativno male udaljenosti i uspjeva održati kontrolu nad svojim sistemom distribucije i prikupljanja, tako da se boce iskoriste više puta. Mnoge tvrtke bi oklijevale napraviti tako veliku investiciju u dizajn i infrastrukturu. Ali za obiteljsku mlijekaru Straus povratak investiranog je bio izvrstan.

Plastične vrećice za namirnice su najčešći primjer krive usklađenosti materijala i upotrebe. Njihov vijek upotrebe u prosjeku traje 10–ak minuta, držanje namirnica od trgovine do auta i od auta do kuhinje kupca. A opet njihov materijal koji je najčešće polietilenska plastika može trajati tisućama godina. Trgovine imaju dugoročnu odgovornost prema svojim kupcima da ih recikliraju, a opet nisu napravile ništa da razviju standardizirane formulacije za proizvodnju i svima dostupne sisteme za reciklažu.

San Francisco je poduzeo mjere da ispravi situaciju nametajući trgovinama da koriste bio-razgradive plastične ili papirnate vrećice. U Njemačkoj, Južnoj Africi, Australiji, Kini i Indiji vlade provode slične programe i naknade za uporabu u cilju borbe protiv plastičnih vrećica koje onečišćuju okoliš.

Kao dizajneri ne bi se smjeli zadovoljiti izborom manjeg od dva zla. Trebali bi stvoriti bolja rješenja koja rješavaju funkcionalne i estetske izazove pakiranja s materijalima koji su primjenjeni njihovoj uporabi.

2.1.3. TEŽINSKO PRIKLADAN DIZAJN

Ako se dizajnira pakiranje za masovnu proizvodnju i posebno ako će pakiranje koje će se dizajnirati biti isporučivano na velike udaljenosti, prije svega treba razmislit kako će dimenzije primarnog dizajna utjecati na sekundarni sistem pakiranja.

Dizajneri pakiranja potražiti će način da smanje „prazni“ prostor unutar pakiranja odnosno unutar kutije, palete pa čak i unutar kontejnera u kojem se šalje. Za velike tvrtke prostorna i ekonomska ušteda može biti iznenađujuće visoka. Ikea, div u proizvodnji kućanskog namještaja savladala je ovaj koncept s namještajem kojeg kupci sami sastavljaju.

Najjednostavniji način da se omogući prazni prostor je to da pakiranje bude pravokutno i da točno stane u kutije u koje se pakira. Ali to uvijek nije praktično i poželjno. Moglo bi biti zanimljivije da se razmisli o drugim načinima kojim bi se pakiranja mogla uglaviti,
posložiti da taman sjedne bez viška prostora. Trapezoidni oblici se lijepo ugnježđuju kao i pakiranja sa nekom vrstom s-krivine.

Dizajneri također mogu promijeniti veličinu kutija da bolje odgovara veličini primarnog pakiranja. Lakše je izračunati volumen valovite kartonske kutije množeći visinu sa širinom i dubinom. Također je lako izračunati površinu prostora kartonske kutije (visina x širina x dubina) uklučujući i klapne). Izmjenom načina na koji su proizvodi poslagani unutar kutije, može se održati potreban volumen, ali iskoristiti manje kartonu za kutije. Za uzvrat ovo bi moglo uštedjeti novac kod isporuke.

2.1.4. RASLOJAVANJE

slučaju pokušalo se eliminirati materijal koji je potreban za distribuciju (omote) premišljujući se oko dizajna.

Kao dio sveukupnog sustava identiteta za neprofitnu ekološku organizaciju The natural Step, Celery je kreirao jedinstveno samopošiljalačko zaglavlje. Svaki list ima specijalno dizajnirane perforacije i rezultate. Korisnik samo treba isprintati pismo s adresom na poleđini te ga saviti na rezultatnim linijama, zatvoriti pismo, dodati markicu i poslati, bez upotrebe omotnice.

Riječ uspori, krećeš se prebrzo proturiječi našoj duboko ukorijenjenoj predodžbi o učinkovitosti, ali premještajući stvari ubrzano po svijetu i nije vrlo učinkovito. Drugim riječima učinkovito je što se tiče vremena, ali to ide na račun ekološke i ekonomske učinkovitosti. Generalno govoreći što se brže pošalje nešto, to se više emitira stakleničkih plinova. Elektronska pošta je primjetna iznimka u pravilu: poruke se dostavljaju gotovo istog trenutka, bilo gdje u svijetu s gotovo nikakvim ekološkim tragom. Osim toga najbolji način je prekoceanskim prijevozom, željezničkim ili putem kamiona. Zaprepašćujuća činjenica je da avionski prijevoz emitira trideset tri puta više stakleničkih plinova nego brod koji prevozi teret. Više se činjenica da će nešto biti poslano i uručeno od danas do sutra ne čini toliko učinkovita.

Ako će projekt isporuke ići na duže relacije, grafički dizajneri mogu pomoći da se smanji njen utjecaj na klimu tako da utroše više vremena na izradu rasporeda na model sporije isporuke. Ispada da je odugovlačenje neprijatelj zelenog dizajna. Ako su rasporedi isporuka pretijesni za sporiji način transporta možda bi projekt isporuke bio kandidat za elektronsku isporuku.

Digitilizacija, Decentralizacija, Na zahtjev. Jedan zanimljiv koncept koji bi trebali imati na umu zeleni dizajneri kod rada na visokoprofiličnim projektima je distribuirano tiskanje. Umjesto da proizvode tisuće ili milijone stvari na jednom mjestu i šalju ih diljem svijeta (tiskaj pa isporučuj model), često ima više logike poslati digitalne spise printerima u nekoliko regija i printati samo količinu koja je potrebna za pojedinu regiju (isporuka pa tiskaj model).

Hibridno izdavaštvo. Dostavljanje informacija na web je često jeftinije nego komunikacija putem tiskovina i u većini situacija uzrokuje manje ekološke štete. Međutim, tiskani medij ima neke prednosti kod korisničkog iskustva. Tiskovina je opipljiva, stabilna i postojana, tako da publika često tiskanu riječ doživljava autoritativnijom i pouzdanijom nego digitalnu. Tiskovina je prenosiva i nezavisna (ne treba vam električno punjenje za brošuru da bi ste je mogli ponijeti sa sobom). Također tiskovina ima efekt koji se nameće to znači da publika može dobiti dizajnirane poruke bez ulaganja truda (kao npr. utipkavanja neke e-mail adrese). Jedan od izazova za zelene dizajnere je pronalazak načina za uporabu digitalnog medija niskog utjecaja bez da žrtvuju učinkovito korisničko iskustvo. Ovo najčešće
rezultira hibridnim izdavačkim modelom koji ujedinjuje tisak i digitalni medij u integriran-
u kampanju.

Lako se uoči razvoj ovog hibridnog modela u napretku Hewlett-Packard globalnog građan-
skog izvješća. Evolucija ovog projekta pokazuje stalni pomak fizičkog objekta prema grupi
materijala u nekoliko medija, ciljano na nekoliko različitih tipova publike. Projekt nedvoj-
beno ostavlja manji trag na okoliš sada nego 2002 godine, ali isto tako ima veće šanse da
dopre do ciljane publike.

Godine 2002. Celery je dizajnirao HP-ov prvi takav izvještaj koji je tada nazvan „Social
and Environmental Responsibility Report“. (1) To je bio konvencionalan printani izvještaj
od 68 strana.

Godine 2003. ime je promijenjeno u „Global Citizenship Report“. Također je kreiran PDF
file izvještaja, koji je imao mogućnost skidanja s interneta.

Godine 2004. printalo se 20 strana skraćenog izvješća kao dodatak 80 strana punog izvješ-
ća. Također je kreiran PDF izvještaj koji ima mogućnost preuzimanja u potpunosti.

Godine 2006. prelazi na HTML, baziranu web stranicu i potpuno PDF izvješće koje ima
mogućnost internetskog preuzimanja, ali nije se printalo potpuno izvješće. Samo je isprint-
tano skraćeno izvješće od 20 strana.

Ovaj sistem isporuke i pakiranja uvelike je utjecao na oblik i ekološki utjecaj na posao koji
grafički dizajneri imaju. Ovi sistemi su prebitni i prezreli za inovacije da ih grafički dizaj-
neri ignoriraju.

2.1.5. HOLISTIČKI ZELENI DIZAJN

Lemnis je nizozemska tvrtka koja proizvodi umjetničko izdanje LED žarulja. Žarulje koris-
te 90% manje energije u usporedbi sa žaruljama sa žarnom niti i gotovo pola energije CFL
žarulje. Traju 35 godina (6 puta duže nego fluorescentne žarulje) i ne sadrže otrovnu živu.
To je revolucionarni proizvod s velikim beneficijama za okoliš. Žarulja tvrtke Lemnis je
skupa. Dugoročno gledajući svaka žarulja svom vlasniku uštedi oko 250 dolara, ali prvo
etko mora uložiti 25 dolara da je kupi. To je mnogo novca kojeg treba dati unaprijed u
usporedbi s cijenom standardne žarulje od 1,5 dolara ili čak 6 dolara koje bi dali za „ener-
getska učinkovitu“ CFL žarulju.

Dizajnerski je izazov predstaviti kupcima da je žarulja od 25 dolara dobra investicija za
njih i za okoliš. Celery je počeo projekt širokog raspona i cijelovit dizajnerski proces. Lem-
nis pakiranje je jednostavan i oplemenjen sa mnogo bijelog prostora i slikom umirujućeg
ambijenta.

Oblik za koji su se odlučili je skraćena piramida. Ovaj oblik se ističe na polici i žarulja
dobro sjeda unutra. Ime žarulje je Pharox, po svjetioniku koji je jedan od sedam svjetskih
čuda antičkog svijeta, a oblik piramide je u skladu s tim. Također se lijepo slaže u kontej-
nere za prijevoz robe, što je čini solidnim „dizajnom za slanje“. Ambalaža za pakiranje je
od 100% recikliranog papira za pakiranje. U pakiranje može stati 6 kutija žarulja u kutiju
uspravno (dizajn za proizvodnju). Kutija se presavijajući zatvara bez ikakvog ljepila što
pruža mogućnost reciklaže (dizajn za sudbinu).

Sve se ovo pripisuje jedinstvenom pakiranju za žarulju. Zamišljene su sve potencijalne
sudbine ovog pakiranja osim hrpe otpada iz smeća. Kutija je dizajnirana tako da je kupci
mogu odmotati, izokrenuti i koristiti pakiranje kao sjenilo za luster. Bespalatan poklon,
lijeva priča i totalno drukčije iskustvo marke za ovu novu tehnologiju.

Ništa od navedenog nije bilo unaprijed isplanirano. Proces dizajniranja promijenio je kraj-
nji dizajn i naravno promijenio je Lemnisovo mišljenje o pakiranju. Umjesto da bude troš-
kovna stavka i podloga za poruke, pakiranje je postalo izvor vrijednosti i markovne dife-
rencijacije. Očito je da je kutija u obliku piramide skuplja od standardne pravokutne kutije
ili plastično blister-pakiranje koje se koristi za kompaktne fluorescentne žarulje. Pakiranje
nije skuplje u postotku cijene žarulje, a nudi nešto drugo na tržištu i dugotrajniju vrijednost
marke.

2.2. EKOLOŠKI ODRŽIV DIZAJN

2.2.2. EKOLOŠKI ODRŽIV DIZAJN ORIJENTIRAN NA ALATE

U ovom poglavlju se govori o alatima koji su razvijeni upravo za proces dizajna koji je
okrenut prema ekološki održivim rješenjima. Podijeljeni su i opisani prema različitim sta-
dijima u kojima se upotrebljavaju:
• Alati koji su konstuirani za određene ekološke ciljeve
• Alati za proizvod LCD (Life Cycle Design)
• Alati za dizajn za eko efikasnost

Povijesno gledajući prvi alati su razvijeni kao nadomjesni alati za dizajn procesa za povećanje određenih dobrobiti za okoliš. (1) Ovi alati su namijenjeni za:

• Odabir materijala s niskim utjecajem
• Smanjenje toksičnih i opasnih materijala
• Dizajniranje za reciklažu
• Dizajniranje za rastavljanje
• Dizajn za preradu
• Različite standarde za okoliš i regulacije

Ti alati mogu biti korisni, ali i dalje samo podupiru rješenja za koja su konstuirana. Prigodnija radna hipoteza bi trebala uzeti u obzir LCD (Life Cycle Design, Dizajn životnog ciklusa) (2) pristup. Može se dogoditi da ponekad alati umjesto da smanje utjecaj zapravo zanemaruju bitnije probleme unutar istog sistema proizvoda ili budu u problemima kada integriraju rezultate u proces i druge dizajnerske alate.

Različiti alati za podupiranje dizajna su evoluirali, pojačavajući njihov kapacitet i učinkovitost unutar okvira za smanjenje utjecaja na okoliš kroz cijelu proizvodnju životnog ciklusa. Neke smjernice bi se mogle istaknuti:

• Primjeniti ciljeve na svakoj fazi životnog ciklusa
• Integrirati LCA (Life Cycle Assessment, Životni ciklus proizvoda)
• Integrirati smjernice u svakoj fazi razvoja proizvoda
• Odrediti prema sektorima roba različitih proizvoda od vrste proizvoda
• Prilagoditi prema različitim fazama razvoja i uključenih stručnjaka
Integrirati s alatima za dizajn i procedurama koje se trenutno koriste (kao što su CAD i CAM)

2.2.2.1. ECODESIGN: OBEĆAVAJUĆI PRISTUP ODRŽIVOJ PROIZVODNJI I POTROŠNJI

Razvijen je od TU Delft, Nizozemska, povjerenstvo UNEP priskrbljuje globalni pristup definiranju strategije za razvoj održivog proizvoda i pragmatične metodologije za integriranje zaštite okoliša u normalnu dizajnersku praksu.

Eco Design Tool je kompjuterski program razvijen od strane Design for the Enviroment Research Group MMU i Nortel temelje se na stručnim pravilima za pružanje pomoći kod dizajnerskih odluka u raznim fazama razvoja. Sistem je kreiran unutar većeg projekta DE-EDS (Design for Enviroment Decisions Support, Dizajn za okoliš za podršku o odlučivanju) i stavljen je u korištenje od strane istraživačkog vijeća inženjera i fizičkih znanosti.

2.2.2.2. ALAT ZA DIZAJN ZA EKO EFIKASNOST

Razvijene metodiologije i alati za dizajn za ekološku učinkovitost su još uvijek vrlo limitirani. Kritična pitanja u takvom razvoju su uvijek povezana s teškoćama analize složenih sustava. Kriteriji ne bi trebali biti drukčiji od proizvodne razine osim stavljanja većeg naglaska na smanjenje u transportu i distribuciji. Faze su više vidljive na razini sustava.

2.2.2.3. KOMPLET ALATA ZA DIZAJN ORIJENTIRAN PREMA IZDRŽIVOSTI

Komplet alata za dizajn orijentiran za izdrživost razvijen je unutar istraživanja MEPSS-a (Methodology for Product Service System, Metodologija za sistem usluge proizvoda) (2) i financirali su ga VI Framework program EU. Cilj ovog kompleta alata je orijentirati dizajn sistema prema održivim rješenjima. Potrebno je definirati nekoliko kriterija održivosti te osigurati odgovarajuću provjeru.
Kriteriji prilagođeni za ekološke dimenzije su:

- Optimizacija životnog vijeka sustava
- Redukcija transporta/distribucije
- Redukcija potrošnje resursa
- Smanjivanje emisija i otpada
- Poboljšanje obnovljivosti/biokompatibilnosti
- Toksičnost, neotrovnost

2.2.3. EVALUACIJA ODRŽIVOSTI U ISTRAŽIVANJU I PRAKSI DIŽAJNA

U ovom poglavlju istaknute su glavne faze ljudske svijesti oko pitanja okoliša i održivog razvoja. Povijesno gledajući od postavljanja pitanja oko okoliša tokom druge polovice prošlog stoljeća, pristup čovječanstva se pomaknuo od pristupa „end of pipe“ prema postupcima koje ciljaju na prevenciju. Drugim riječima pomakli smo se sa postupaka i istraživanja koji su fokusirani isključivo na sustavu saniranja zagađenja prema istraživanju inovativnih pokušaja koji imaju za cilj smanjenje onečišćenja odmah u izvoru. Geslo United Nations Environmental Programme i drugih instiuta je postala čišća proizvodnja, definirana kao „stalna redizajniranja industrijskih procesa i proizvoda kako bi se spriječilo onečišćenje i generiranje otpada, te rizika za ljude i okoliš“. Pitanje okoliša shvaćeno je kao utjecaj sustava proizvodnje-potrošnje na ekološku ravnotežu, počelo se postavljati u drugoj polovici 1960-ih kao posljedica ubrzane i proširujuće industrijalizacije. Iz tog vremena možemo se prisjetiti zagađenja Velikih jezera Sjeverne Amerike, prve ekološke katastrofe uzrokovane pranjem ulja teretnih tankova tankera u jezeru ili žrtava smoga u nekim industrijskim državama.

Prvi znanstveni radovi koji se bave tim problemima objavljeni su na početku 1970 godine. Internacionalne studije i debate počele su uzimati u obzir pogoršanje i iscrpljenost prirodnih izvora kao nepoželjne efekte industrijskog razvoja. Prirodne granice našeg planeta postale su sve uočljivije. Prvo u pogledu nekontrolirajućeg tehnološkog razvoja proizvodnje i potom u vidu porasta populacije na svjetskoj razini.
Internacionalna debata o pitanjima okoliša se proširila dalje tokom 1980 godine. Pritisak javnog mišljenja se intenzivirao i institucije su zauzele njihovo mišljenje u nizu ekoloških normi i pravila koja ispituju proizvodne aktivnosti i koje se temelje na načelu da onečišćivač plaća.

Godine 1987. UN World Commission on environment and development je izradio važnu studiju da bi dao indikacije o budućnosti čovječanstva. Ovo izvješće je nazvano „Our Common Future“ i bilo je prvo koje definira održivi razvoj kao “razvoj koji je u susretu sa kompromitiranja mogućnosti da buduće generacije mogu zadovoljiti svoje vlastite potrebe”.

U drugoj polovici 1990. serija studija i analiza dovela je do jasnijeg shvaćanja dimenzije potrebnih promjena da bi se postiglo društvo koje je učinkovito i globalno održivo. Uvjeti za održivost mogu se postići sa drastičnim smanjenjem konzumacije prirodnih resursa u usporedbi sa prosječnim utroškom naprednih industrijaliziranih društava. Neke studije uzimaju u obzir demografski rast i pretpostavljaju porast zahtjeva za dobrobit u trenutno ne naprednim zemljama, a to je pokazalo zapanjujući rezultat. U 50 godina uvjet za održivost
će se moći postignuti samo ako se podigne eko učinkovitost proizvodnje, sistem utroška za najmanje deset puta.

Potencijalna uloga za dizajn raste zbog razloga proširenih interesa u proizvodnji i usluzi inovacija i još više zbog drastičnih promjena u kvaliteti koja određuje ponudu, smatra se da je to estetska i socijalna dimenzija. Ova rastuća uloga je vidljivo i učinkovito ušla u praksu i istraživanje dizajna.

2.2.3.1. EVOLUCIJA ODRŽIVOSTI U DIZAJNU

Prva razina na kojoj su mnogi teoretičari i akademici radili je selekcija resursa s niskim utjecajem na okoliš: na jednoj strani materijali, a na drugoj energetski izvori. Glavne teme su bile eliminacija toksičnih supstanci, mogućnost reciklaže, biorazgradivost i obnavljajući izvori.

Od druge polovice 1990. godine pažnja se djelomično pomakla na razinu proizvoda, prema dizajnu proizvoda sa malim utjecajem na okoliš. Tih godina, postalo je očito koji se utjecaj na okoliš može pripisati proizvodu i kako ih procijeniti: dio rasprave je bio ponovno postavljen na dizajn za održivost počevši od sustava inovacija na značajno širu dimenziju u odnosu na jedan proizvod.

2.2.3.2. IZBOR RESURSA SA NISKIM UTJECAJEM

Temeljna pitanja i kriteriji resursa niskog utjecaja mogu se identificirati pri ulasku u znanstvene i kulturološke rasprave, a kasnije u dizajnersku praksu. Jedno od prvih pitanja je toksičnost i štetnost materijala. Ona su već rezultirala sa mnogim regulacijama, ali nove ažurirane procjene se još obračunavaju. Kao dodatak tradicionalnim sposobnostima u samom dizajnu, zahtijeva se od dizajnera prošireno znanje o vezanim normama i usvajanje u biti općeg načela opreznosti.
Drugo povezano pitanje koje se podiglo s komparativnom dvosmislenošću je prirodnost materijala. Ova dvosmislenost sa svojim terminološkim korištenima, koja je bila i još uvijek je prihvaćena od mnoštva, tvrdi da “prirodni” materijal nema nikakvog ekološkog utjecaja na okoliš, u najmanju ruku ima sličan onom sintetičkog materijala. Ovaj argument kao što je shvaćen sad je pogrešan iz dva razloga: prvo u prirodi toksičnih i štetnih supstanci ima u obilju, čak i sada priroda uzrokuje više toksičnih supstanci od čovjeka, budući da priroda proizvodi više toksičnih supstanci od čovjeka, čovjek ih proizvodi na način da izmjenjuje supstance i tako stvara od ne toksičnih toksične, znači on izmjenjuje njih u svrhu proizvodnje proizvoda. Drugo, praktično svi prirodni materijali su podloženi seriji procesa sa ciljem da postanu koristivi u proizvodnji, svi ti procesi imaju svoj utjecaj na okoliš.

Zadnje ali ne manje važno dolazi pitanje obnovljivih izvora energije i materijala, ili istraživanje i razvoj različitih alternativnih izvora energije kao solarna energija vjетra, vode, vodiča te elektrana na biomasu i njihova integracija u sustav proizvodnje.

2.2.3.3. DIZAJN ŽIVOTNOG CIKLUSA PROIZVODA
Tokom druge polovice 1990. pojavila se nova disciplina u dizajnu proizvoda s niskim utjecajem, ona se konkretnije i realističnije mogla nositi sa kompleksnošću teme. Postalo je jasno što se misli pod zahtjevijanjima okoliša industrijskog proizvoda: koncept analize životnog ciklusa LCA.

Metodologija analize životnog ciklusa proizvoda (LCA) je ustanovljena, ona procjenjuje utjecaj na okoliš ulaza i izlaza svih procesa u svim stadijima životnog ciklusa koje se odnose na učinak proizvoda. Životni ciklus proizvoda nije bio rođen u ciklusu dizajna i zbog tog razloga ima svoje granice kao alat za dizajnere. Ima jak utjecaj na istraživanje dizajna koje je osim toga počelo koristiti izraz LCD (Life Cycle Design) koji se zapravo bavi sa dizajnom životnog ciklusa proizvoda. Ovaj izraz je usko povezan sa eco dizajnom i dizajnom za okoliš. Inzistiralo je na podrazumijevanju cijelog životnog vijeka unutar procesa dizajna, zajedno sa svim procesima potrebнима za proizvodnju materijala, proizvoda, distribuciju za upotrebu i za raspolaganje kao samostalne jedinice.

Drugi temeljni kriterij LCDa je dizajniranje funkcije koju proizvod mora osigurati radije nego sam proizvod. Zbog ovog udruženja sveukupna analiza procjenjuje da li je utjecaj na okoliš manji i za koliko mnogo.

2.2.3.4. SUSTAV DIZAJNA ZA EKO UČINKOVITOST

Kriteriji za proizvod LCD dolazi do prepričanje koje proizvod mora osigurati radije nego sam proizvod. Zbog ovog udruženja sveukupna analiza procjenjuje da li je utjecaj na okoliš manji i za koliko mnogo.

- Uzimanje u obzir da je sistem integrirana mješavina proizvoda i usluga koji su zajednički sposobni zadovoljiti zadanu naredbu za dobrobit (sistem u kojem je pažnja usmjeren na eko efikasnost mogućeg partnerstva između socio-ekonomije aktera koji sudjeluju u lancu vrijednosti)
- Smatranje sistema kao otvorenog umjetno stvorenog ekosustava koji pokušava smanjiti emisije plinova i otpada (sistem industrijske simbioze u kojoj je pozornost usmjeren na tok resursa ulaza i izlaza različitih tipova proizvoda)
Okolišna vrijednost se još procijenjuje kao sažet utjecaj svih životnih ciklusa proizvoda i usluga koji čine sistem opskrbe kao i njihova funkcionalna jedinica.

Fragmentacija društvenih aktera uz životni ciklus proizvoda (u tradicionalnoj ekonomiji industrijskih društava) isključuje ekološku učinkovitost sistema životnog ciklusa preklapa-
jući se sa ekonomskim interesom sudionika.

U slučaju sistema uslužnog proizvoda koji odgovara na zahtjev. Proizvođači nisu vezani za
ovaj odnos, ali su vezani za smisao serijskog korištenja otpada i emisije plinova procesa
proizvodnje. U tom slučaju govorimo o sistemu ekološke učinkovitosti koja je rezultat no-
vog približavanja (s ekonomskim interesom) između dioničara: inovacije su ne samo na
razini proizvoda, nego nastaje i novi odnos između različitih aktera.

Tako ostaje unutar sposobnosti unutar strateškog dizajna je u okviru nadležnosti strateškog
projektiranja, sudjelovanja dizajnom i dizajnom novih oblika partnerstva između različitih
dioničara. Oni pripadaju određenoj vrijednosnoj konselaciji ili simbiozom povezanom pro-
cesu proizvodnje.

Diskursi su privukli okolišno održiv dizajn i strateški dizajn te zajedno skovali izraz: „strate-
ški dizajn za održivost“, istaknuvši činjenicu da dizajn za okolišnu održivost mora iskori-
stiti i integrirati metode i alate strateškog dizajna i obrnuto.

2.2.3.5. KRITERIJI I SMJERNICE DIZAJNA

SMANJITI POTROŠNJU MATERIJALA

- Izostaviti materijal u proizvodu ili neke od njegovih komponenata
- Digitalizirati proizvod ili neke od njegovih komponenata
- Izbjeći prevelike dimenzije
- Smanjiti gustoću
- Izbjeći dodatne komponente s malom funkcionalnosti (2)

SMANJIVANJE OSTATAKA I OTPADA

- Izabrati proces koji umanjuje ostatke i otpatke materijala tokom proizvodnje
Uključiti simulacijske sustave za optimiziranje transformacijskih procesa

Uključiti što više utrošno učinkovitih sustava

- Dizajn za što učinkovitiju potrošnju operativnog materijala
- Dizajn za što učinkovitiju opskrbu materijala
- Dizajn za što učinkovitiju upotrebu materijala
- Sustav dizajna za utrošak pasivnih materijala

3. PLASTIKA I OKOLIŠ

U SAD-u približno 25% ukupne proizvedene plastike koristi se u pakiranju. Papir i karton su najčešći materijali koji se koriste za pakiranje, dok je upotreba plastike u brzom porastu.

Ima široku namjenu u kontejnerima, fleksibilnom pakiranju i u drugim formama. Dok se često koristi sama, također je bitna u primjeni gdje je kombinirana sa drugim materijalima u premazivanju i kao sloj u višeslojnoj stukturi. U takvoj primjeni plastika doprinosi važnim svojstvom kao što je jednostavnost formiranja, toplinsko izoliranje, barijere, fleksibilnost, udarna čvrstoća, mala težina, smanjena veličina paketa i mali trošak. Međutim s vremenom na vrijeme, plastično pakiranje je patilo zbog negativnih potrošačkih opažanja koje su krenule od vjerovanja da je sva plastika povezana sa opasnim emisijama plinova jer strahuju da komponente iz plastičnog pakiranja mogu prijeći na proizvod i štetiti ljudskom zdravlju.

Većina pakiranja ima životni vijek manje od godinu dana. Niz izvještaja od Environmental Protection Agency - EPA (Agencija za zaštitu okoliša) o općinskom komunalnom otpadu MSW (Municipal Solid Waste, Kućni otpad), dok nije jasno precizirano na prijavljivanje korištenja plastičnog i drugog materijala za pakiranje, omogućuje korisnu procjenu sveukupne uporabe plastičnih i drugih materijala za pakiranje kao i informaciju o doprinosu različitih tipova plastičnih pakiranja te problema s otpadom. Slika 1 pokazuje proporcije raznih tipova materijala za pakiranje u U.S. koje je izazvao kućni otpad prije oporavljanja 1998. godine. Plastika iznosi nešto manje od 14% svih ambalaža u kućnom otpadu po težini.

![Diagram Slika 1: Pakiranje u U.S. koji je izazvao kućni otpad, 1998](image1.png)

Slika 2: Povezanost proporcije plastike u odbačenom pakiranju prije recikliranja u U.S. MSW 1996. godine težinom
Slika 3: Povezanost proporcije plastike u odbačenom pakiranju nakon recikliranja u U.S. MSW 1996. godine volumenom

Plastika predstavlja veće proporcije volumenom (37%) nego težinom (18%). Trebalo bi biti naznačeno da se Slika 2 i Slika 3 ne mogu direktno usporediti jer Slika 2 pokazuje proporcije prije recikliranja, a Slika 3 pokazuje proporcije nakon recikliranja. Godine 1996. plastika je iznosila 11.8% ambalažnog krutog komunalnog otpada prije reciklacije.

3.1. FUNKCIJE PAKIRANJA

Dok funkcije pakiranja mogu biti grupirane na različite načine, jedno zajedničko grupiranje je zatvorenost, zaštita i komunikacija. Dok grupiranje funkcija na ovaj način raspravu čini laksom, trebalo bi biti naglašeno da granice između grupa nisu uvijek jednostavne i u mnogim slučajevima stavka jednog pakiranja služi višestrukoj svrsi. Zatvorenost je najosnovnija funkcija pakiranja. Nije moguće transportirati tekućinu ili zrnati proizvod da ga se na neki način ne upakira. Za veće proizvode koji se uvjerljivo mogu transportirati bez spremnika, spremnik pojednostavljuje zadatak koji nam omogućava rukovanje sa većim
brojem proizvoda kao jednom cjelinom, to je razlog zbog kojeg većina ljudi donosi svoje namirnice u vrećicama.

Pakiranje štiti proizvod na različite načine. Zatvorenost samo po sebi pruža određenu razinu zaštite od kontaminacije proizvoda ili oštećenja uzrokovanih izlaganjem okolišnih utjecaja kao što su prašina i mikroorganizmi. Ovisno o proizvodu, zaštita može biti potrebna zbog dobivanja ili gubljenja vode ili drugih hlapljivih supstanci: udarac, abrazije ili vibracije, korozije te izlaganja suncu. U nekim slučajevima, pakiranja koja imaju dječiju zaštitu, potrebna su upravo zbog opasnih materijala. Funkcija pakiranja je zaštititi ljudsko biće ili okoliš od izlaganja proizvodu.

Komunikacija se odnosi na poruke o proizvodu sa pakiranja dane onima koji se nalaze pred njim. Ove poruke se protežu od osnovnog identificiranja proizvoda i njegovog proizvođača do suptilnih “kupi me” poruka koje se obraćaju potencijalnim kupcima. Već postoji „pogrebi i pomiriši“ mogućnosti, kao i naprave za spremljanje, recepti za lijekove koji kad se stavljaju u posebnu napravu pročitaju korisniku informacije na etiketi. Barcode se rutinski koristi za prijenos informacija o cijeni na mjestu prodaje, kao i praćenje stvari tokom distribucije. Dok su ove funkcije zajedničke različitim tipovima pakiranja, u porastu se proizvođači proizvoda okreću plastičnom pakiranju da dobiju istu ili bolju funkcionalnost za nižu cijenu nego alternativni materijali.

3.2. PREDNOST PRIMJENE PLASTIČNOG PAKIRANJA

Plastika različitih vrsta nudi mnogo pogodnosti i donosi industriji pakiranja oslonac na ovaj materijal. Najznačajnija pokretačka snaga u porastu korištenja plastike u krajnjoj liniji su tvrtke. Korištenje plastičnog pakiranja često povisuje zaradu tvrtke sa sniženjem cijena, porast prodaje, a nekad i oboje (korištenjem plastike troškovi proizvodnje su manji, pa su i cijene u dućanima niže). Kada kupac kupi proizvod od trgovca na malo, često će ti proiz-
Vodi biti upakirani u plastične vrećice za robu. Dok papirnate vrećice za robu nisu izbačene iz trgovina, plastika je uzela veliki dio trgovine i mnogi trgovci na malo pogotovo u segmentima bez namirnica ne nude više izbor između plastičnih i papirnatih vrećica. Primarni razlog je to što su plastične vrećice jeftinije za trgovce na malo. Plastične vrećice zauzimaju manje mjesta u skladištima i u distribucijskom prijevozu. Vrećice nisu podložne gubitku jačine prilikom močenja, tako da pružaju veću zaštitu proizvodima. Kada više nisu korisne zauzimanju manje mjesta na odlagalištima nego njihov papirnati ekvivalent, gdje su stabilne i ne doprinose slijeganju zemljišta i nastanku metana. Ako se pale tada priskrbljuju vrijedan izvor energije za pretvaranje u struju. Za razliku od papirnatih vrećica one se ne biorazgraduju na odlagalištima i ne pridonose proizvodnji metana prilikom pretvaranja u toplinu ili struju. Proizvedene su od neobnovljivog resursa. Segment trgovine sa svježe pripremljenom hranom ovisi o uporabi plastike koja omogućava svojstva skrojene barijere i/ili modificiranu atmosferu potrebnu da održi prihvatljivu kvalitetu proizvoda u potrebnom vremenu, mnogi od ovih proizvoda uopće nisu bili dostupni prije samo par godina. Sada je moguće kupiti salatu spremnu za jesti, svježu paštu spremnu za kuhanje koja se može držati u hladnjaku nekoliko tjedana, sir koji je već nariban, mrkve koje su već oguljene i različite druge proizvode. Svi ovise o plastici da bi održali kvalitetu i dopustili kupcima da vide proizvod i da budu nagovoreni da ga kupe.

Šampon, ulje za kupanje, tekući sapun i mnogi drugi proizvodi koji se primarno koriste u kuponicama su gotovo uvijek pakirani u plastičnim bocama. Plastika ne samo da je otporna na vlagu, sposobna je izdrtati ispadanje iz sklizavih ruku na tvrde površine bez da se slomi ili razbije, bez da ne pravi oštre fragmente koji bi mogli uzrokovati ozbiljne ozljede. Plastika može omogućiti transparentnost ako je to željeno ili može biti u raznolikim bojama i oblicima da stvori željenu sliku za proizvod. Plastični zatvarači koji se koriste na spremnicima obično uklujuju i neku značajku za doziranje kako bi se olakšalo korištenje proizvoda i smanjilo njegovo prolijevanje. Doziranje pomaže i u savišljivosti plastike, što omogućava da se spremnik stiše. Nadalje, plastični spremnici su daleko lakši i nešto manji nego staklena ili metalna pakiranja koje plastika zamjenjuje, što se direktno reflektira na uštedu pri distribuciji i skladištenju. U prilog uštedi goriva i sklađišnog prostora, manje distribucijskog pakiranja (palete, kartonske kutije) je potrebno za dostavljanje iste količine proizvoda.

Šampon, ulje za kupanje, tekući sapun i mnogi drugi proizvodi koji se primarno koriste u kuponicama su gotovo uvijek pakirani u plastičnim bocama. Plastika ne samo da je otporna na vlagu, sposobna je izdrtati ispadanje iz sklizavih ruku na tvrde površine bez da se slomi ili razbije, bez da ne pravi oštre fragmente koji bi mogli uzrokovati ozbiljne ozljede. Plastika može omogućiti transparentnost ako je to željeno ili može biti u raznolikim bojama i oblicima da stvori željenu sliku za proizvod. Plastični zatvarači koji se koriste na spremnicima obično uklujuju i neku značajku za doziranje kako bi se olakšalo korištenje proizvoda i smanjilo njegovo prolijevanje. Doziranje pomaže i u savišljivosti plastike, što omogućava da se spremnik stiše. Nadalje, plastični spremnici su daleko lakši i nešto manji nego staklena ili metalna pakiranja koje plastika zamjenjuje, što se direktno reflektira na uštedu pri distribuciji i skladištenju. U prilog uštedi goriva i sklađišnog prostora, manje distribucijskog pakiranja (palete, kartonske kutije) je potrebno za dostavljanje iste količine proizvoda.
3.3. TIPOVI PLASTIČNIH PAKIRANJA

Plastična pakiranja bi se mogla svrstati u opće kategorije krute i polukrute spremnike, fleksibilno pakiranje i druge forme. U kategoriji spremnika boce su najčešći tip pakiranja, ali plastika se uvelike koristi i kod kada, cijevi, kanti, pladnjeva i drugih oblika. Kategorija fleksibilnog pakiranja uključuje: omote, vrećice, torbe sa ručkom te. Druge kategorije uključuju između ostalog ublažavajući blister, čepove i poklopce.

Uporaba plastičnih pakiranja ima stabilan rast godinama. Kruti plastični spremnici (boce, tegle) zamijenili su materijale kao što su staklo i metal. Također postoji dugogodišnji trend zamjene krutog pakiranja sa fleksibilnim pakiranjima. Naprimjer artikli institucionalne pripreme i usluživanje hrane sada se distribuiraju višeslojnim vrećicama radije nego željeznim limenkama.

3.3.1. POLIETILEN VISIKE GUSTOĆE

Godine 2000. približno 15,602 milijuna pani djevičanskog polietilena visoke gustoće (HDPE – High-Density Polyethylene) smole koristilo se u SAD-u i Kanadi. Film za pakiranje i spremnici odgovorni za veliki fragment ove upotrebljene količine, preko 38% ako se vrećice za namirnice i vrećice za kupljenu robu uračunaju kao pakiranje. (3)

Najveća kategorija korištenja HDPE-a kod pakiranja su boce. Za djevičansku smolu gotovo 50% ovih boca se koristi za hranu, 6% za motorna ulja i preostalih 44% za kućanske i industrijske kemikalije različitih vrsta. Unutar kategorije hrane najveći udio imaju boce za mlječno i vodu. Godine 1998. HDPE boce za mljece i vodu su iznosile 18% svih plastičnih spremnika u kućni otpad. Boce i spremnici sveukupno 31.4% svog HDPE pakiranja u kućni otpad, a pakiranje je predstavljalo preko 78% svog HDPE u kućni otpad. HDPE nudi razumnu krutost i snagu, izvrsnu barijeru vlage i sposobnost uporabe pigmenata da bi se postigao širok spektar boje i niska cijena. Primarni nedostatak je nedostatak transparentnosti i slaba barijera na većinu plinova.

U SAD-u recikliranje HDPE boca kroz prikupljanje na nogostupima i sustav odlaganja je vrlo čest. Prema American Plastics Concil, više od 20 000 američkih zajednica imaju pristup recikliranju plastike i gotovo sve veće zajednice uključuju HDPE boce u svoj program.
sakupljanja. Recikliranje boca od NE-HDPE-a i drugih oblika HDPE pakiranja je manje često.

U Kanadi, Alberta program dobrovoljnog upravljanja za HDPE boce mlijeka je postigla širom provincije stopu obnavljanja od 40% sa 16 zajednica koje su postigle stopu od 70% i više. Program je nudio najvišu cijenu za sakupljačke zajednice zajedno sa sredstvima za aktivnosti promoviranja.

Reciklirani HDPE je važan materijral u prozvodnji određenih tipova HDPE pakiranja. Većina HDPE boca koristi se kao sredstvo za pranje robe i omekšivače koji se proizvode sa troslojnom strukturom, sadrže reciklirani HDPE miješan sa ostatatkom materijala koji je nastao brušenjem neravnina koji ostane na bocama nakon što se izvade iz kalupa, od procesa izrade srednjeg sloja boca. Mnoge boce motornih ulja sadrže mješavinu reciklirane plastike sa djevičanskim plastikom u stucturi jednog sloja. Reciklirani HDPE od boca mlijeka se često koristi u proizvodnji vrećica za namirnice.

3.3.2. POLIETILEN NISKE GUSTOĆE (LDPE) I LINEARNI POLIETILEN NISKE GUSTOĆE (LDPE)
Oko 17 565 milijuna pani djevičanskih polietilena niske gustoće i linernog polietilena niske gustoće se koristilo u SAD-u i Kanadi u 2000. godini. Film za pakiranje sam predstavlja 28% uporabe LDPE i LLDPE-a ako se računaju vrećice za stavljenje kupljenih artikala EPA procjenjuje da LDPE/LLPDE vrećice i papir za umatanje iznose 85.6% svog LDPE i LLDPE pakiranja u kućni otpad u 1998. godini i da ambalaža iznosi 50.7% LDPE i LLDPE u kućni otpad. LDPE i LLDPE omogućuju izvrсnu fleksibilnost, dobru snagu, umjerenu transparentnost, dobru barijeru za vlagu i nisku cijenu.

Linearni polietilen niske gustoće je u širokoj primjeni u ambalaži zauzeo mjesto starog LDPE-a u mnogim primjenama. LLDPE viši strukturalni kopolimer sa manjom distribucijom molekularne težine koja je rezultirala poboljšanje u čvrstoći u usporedbi sa rasprostranjenim LDPE-om. Unatoč višoj cijeni njegovo korištenje rezultiralo je uštedom zbog nje-gove sposobnosti da se upotrebljava u puno tanjem sloju ali sa jednakim performansama. Aplikacija kao što su premazivanja, LDPE se koristi mnogo češće nego LLDPE. U brojnim aplikacijama filma mješavine LDPE-a i LLDPE-a koriste se da održe najbolju kombinaciju svojstava. Često se izraz LDPE odnosi na LDPE, LLDPE i mješavine dvaju materijala.

Recikliranje LDPE-a i LLDPE-a je manje uobičajno nego recikliranje HDPE-a. EPA je izvjestila da stopa recikliranja za LDPE/LLDPE torbe, vrećice i omote iznosi 5.2% za 1998. i sveukupnu stopu recikliranje pakiranja LDPE/LLDPE od 4.4%. Velika većina materijala je sakupljena od trgovina, iz rastezljive folije za palete hrpe robe. Sakupljanje
LDPE, LLDPE i HDPE vrećica za namirnice i artikle u trgovinama na malo je bila prilično uobičajna, iako nikad nije zahvatila veći dio dostupnog materijala mnogi trgovci na malo su zaustavili takve programe zbog cijene i pitanja kontaminacije. Neka mjesta za odlaganje su i dalje dostupna za takve materijale, ponekad preko škola ili organiziranih zajednica. Sakupljanje plastičnog filma u zajednicama je dostupna u šaćici zajednica u SAD-u b U Canadi; Ontario, sakupljanje u zajednicama filma je uobičajna. The Environment and Plastics Industry Council (EPIC) je objavio vodič za takvo sakupljanje. Velika upotreba recikliranog LDPE-a i LLDPE-a je u proizvodnji vrećica za smeće. Dio se koristi za proizvodnju vrećica za artike.

3.3.3. POLIPROPILEN

Recikliranje PP pakiranja je manje često nego recikliranje HDPEa, LDPE/LLDPE i PETa, manjim dijelom zbog toga što ga ima manje za recikliranje. PP se rijetko uključuje u program sakupljanje u zajednicama ili mjesta za odlaganje i ima malo PP za recikliranje od trgovina. EPA je procijenila da 1998. stopa recikliranja za PP pakiranje je bila 3.2%.

Male količine pigmentiranih PP čepova uzrokuju diskoloraciju ne pigmentiranih HDPE tokova. Dok PP tolerirani u pigmentiranim HDPE tokovima, velike količine PPa uzrokuju neprihvatljiva smanjenja preformansi recikliranog materijala. PP kontaminacija PET-a nije veliki problem budući da je materijal lako odvojiv.

3.3.4. POLISTIREN
Polistiren (PS) se koristi kod primjene pakiranja u pjenastom i u visoko transparentnom ne pjenastom kristalnom obliku (HIPS) je djelomično mješavina i djelomično kopolimer, dizajniran da bude pojačan za udarne snage. Polistiren nalazi mjesto svoje primjene u spremnicima, filmovima i vrlo važno u materijalima za uglavljenje kod transporta. Pjenasti polistiren se koristi kod pakiranja radi sigurnijeg transporta. Primjena djevičanskog polistirena u SAD-u i Kanadi je prikazana na Slici 7 u materijalima pakiranja u kućnom otpadu 1998. godine. U spremnicima ga je bilo 28.6%, 28.6% u vrećicama i omotima i 42.9% u drugim kategorijama pakiranjima uključujući i materijale za uglavljenje predmeta za transport.

Problem zagađivanja ostaje s nama. Dok je potpuno istinito da je smeće posljedica neprihvatljivog ljudskog ponašanja, a ne svojstvo materijala kad se baci u smeće. Polistiren nije biorazgradiv tako da može ostati u okolišu dugi niz godina.
3.3.5. POLIVINIL KLORID

Ambalaža je samo mali dio tržišta za polivinil klorid (PVC) koji je doživio opadanje udjela tržišta ambalaže tokom zadnjeg desetljeća. PVC pakiranje u SAD komunalnom krutom otpadu je pretežno u kategoriji „drugog otpada“, posebno o tipu ambalaže kao što su podlošci i blisteri. Primjena im je šarolika, uključujući i njihovu široku primjenu kod medicinskog pakiranja.

PVC ambalaža ide od relativno krutog i krtog spremnika do vrlo mekog, fleksibilnog filma koji se koristi za omote. Generalno PVC je visoko transparentan materijal s ponešto tendencije da požuti tokom vremena, posebno ako je izložen suncu. Transformira se lako, što ga čini izborom mnogih kod blister pakiranja.

Slika 7: PVC pakiranje u komunalnom krutom otpadu, SAD, 1999
PVC je pod napadom grupa za zaštitu okoliša. PVC sadrži klor i može dovesti do stvaranja kloriranih dioksina ako je zbrinut spaljivanjem. Dok dokazi pokazuju da prisutnost ili izostavanje PVC-a nije značajan u emisijama dioksina kod dobro kontroliranog spaljivanja, manje važni od uvjeta izgaranja, razlog za brigu je oko njegove prisutnosti u loše kontroliranim sustavima spaljivanja. PVC je također napadan zbog zabrinutosti povezane oko kancerogenosti njegovog vinil klorid monomera. Sve više, olovno i kadmijski stabilizatori korišteni u nekim PVC smolama se ograničavaju ili zabranjuju, zbog zabrinutosti o toksičnim efektima ovih teških metala.

PET je izronio kao snažan konkurent PVC-u na tržištu boca i u termoformirajuće folije. PET nudi jednaku ili bolju transparentnost od PVC-a, nedavna smanjenja cijene PET-a su ga učinili visokim konkurentom. Dodatno, PET ne nosi negativnu okolišnu sliku poput PVC-a.

U SAD-u malo je recikliranja PVC pakiranja. Recikliranje PVC boca je također problematično ako se miješaju sa PET bocama. PET je jako osjetljiv na degradaciju čak i od malih količina PVC-a. Sličnost PET i PVC boca znači tako da oboje sakupljaju i ručno sortiraju vrlo je vjerojatno da rezultira kontaminacijom do neke mjere. Vrlo učinkoviti automatizirani sistemi sortiranja su se razvili za odvajanje PET/PVC spremnika, ali to je relativno skupo i ne mogu si baš svi separacijski objekti priuštiti tako veliko ulaganje. Kontaminacija PET-a PVC-ovim komponentama pakiranja, kao što su zatvarači, etikete i slično može biti značajan problem. Sistemi separacije bazirane na gustoći ne mogu se učinkovito koristiti, da odvoje dvije smole pošto se njihove gustoće poklapaju.

3.3.6. OSTALA PLASTIKA

Raznolike plastike koriste se u puno manjim količinama. Ti materijali su generalno gledajući značajno skuplji, ali imaju specifične značajke koje ih čine važnim za određene tipove primjena.

Poliamid nadmašuje ove kad je uporaba visokih temperaturi potrebna, kao naprimjer kod pakiranja smrznute hrane za „kuhanje u vrećici“. Omogućuje odličnu barijeru za miris i okus, umjereno prodiranje kisika i izvanrednu snagu i čvrstoću.
Etilen vinil alkohol (EVOH) i polivinil liden klorid (PVDC) su najčešći izbor kada je potrebna izvrsna barijera protiv prodiranja kisika. EVOH nudi bolju barijeru nego PVDC za kisik kada je suh, ali barijera se bitno smanjuje kod visoke vlage. EVOH se također lakše obrađuje nego PVDC. Oboje se najčešće koriste kao komponente u višeslojnoj strukturi.

Polikarbonat (PC) je transparentan, vrlo jak i tvrd. Taj se materijal odabire za boce s vodom (ponovno punjive, više put punjive boce) od 5 gal ali počinje osjećati konkurenciju od PET-a na ovom tržištu. Također mnogo se primjenjuje u medicinskom pakiranju. Polivinil acetat (PVA) i etilen vinil acetat (EVA) se naširoko koriste u formulacijama ljepila i koriste se u nekoj mjeri za pakiranje filmova. Poliakrilonitril (PAN) je kopolimerna forma koja se koristi u visoko barijernim spremnicima, posebno za industrijske i kućanske kemikalije.

Također se brojni drugi specijalizirani polimeri koriste u pakiranju. Recikliranje ovih materijala u biti je nepostojeće. Male količine mogu se uključiti u sistem reciklaže miješane plastike od kojih se proizvodi plaštenina grada. Relativno mala količina ovakvih plastika je dostupna za obnovu. Dodatna kompleksacija je da često formiraju višeslojnu strukturu, što čini njihovu obnovu i reciklažu nepraktičnou za većinu slučajeva.

3.4. BIORAZGRADIVA PLASTIKA

Razgradivost je stoga postala marketinško sredstvo i brojni proizvođači su prodavali svoju robu u vrećicama za namirnice za koje su tvrdili da su razgradive. Neke od ovih struktura su bile fotorazgradive umjesto biorazgradive kapitalizirajući na nedostatku shvaćanja publike, na različi između dvije karakteristike. Druge su bile proizvedene od mješavine škroba inpolietilena niske gustoće, ponekad s dodanim fotoooksidansom. Proizvođači su tvrdili da su ove škrobno-plastične mješavine biorazgradive. Tvrdili su da mikroorganizmi kad uklone oko 6% škrobi od mješavine, mogu napasti i konzumirati LDPE koji je ostao, pošto je sad znatno uvećana površina. Međutim, nema uvjerljivih dokaza koji to podupiru i neki nezavisni istraživači nisu našli dokaze značajne biorazgradivosti LDPE komponente.

Polivinil alkohol (PVOH) je plastika biorazgradiva i topiva u vodi koja je dostupna već niz godina. Njena visoka cijena i topivost u vodi limitira njenu prikladnost za pakiranje, ali ima važnu ulogu u marketingu. Naprimjer, koristi se za pakiranje nekih poljoprivrednih
kemikalija, omogućujući da pakiranje stoji mirno u spremniku gdje se može miješati. Modificirani PVOH ima ograničenu topljivost.

Na prostoru odlaganja otpada, beneficije okoliša od biorazgradive plastike su ograničene na tokove otpada koji će biti kompostirani, predmeti koji su povezani sa problemom smeća i predmeti koji su skloni da dospiju u kanalizacijske sustave. Ako će se otpad odlagati na odlagalište ili ići na spaljivanja, biorazgradivost ne nudi stvarne prednosti.

3.5. IZVOR SMANJENJA

Jedan od značajnih načina kako smanjiti utjecaj proizvoda na okoliš je korištenje manje materijala za njegovu izradu. To se odmah preslikava na manje korištenje sirovih materijala i manje otpada na kraju životnog ciklusa pakiranja. Najčešće to znači manje korištenje energije kroz životni ciklus pakiranja. Budući da se to uvijek očituje u sniženom trošku (budući da manje materijala mora biti kupljeno) stanje pakiranja ima dugu povijest u pakiranju. U praksi, pokretačka sila u ovom načinu smanjivanja izvora je smanjenje troška. U ambalaži novije vrijeme, dobrobiti okoliša su preuzele značajnu, ali često sporednu ulogu.

Godine 1977. kad su uvedene 2L PET boce, težile su 68g (uključujući HDPE baza). Godine 1999. redizajnirana boca težila je samo 49g, smanjenje od 27%. Sa oko 5,7 milijardi prodanih boca svake godine ukupna ušteda je približno 200 milijuna svake godine.

Procter & Gamble Corp. (P&G) (20) i njihov snabdjevač bocama, Continental PET Technologies, redizajnirali su PET boce P&G koje su koristile za biljno ulje. Novi dizajn je koristio 30% manje plastike nego prijašnji dizajn, dok je postigao istu jačinu i rezultirao smanjenjem od oko 2,5 milijuna pani plastike po godini. Kao dodatak pravokutni dizajn boce je omogućio da stanu u nosača kompaktnije nego stare cilindrične boce koje su rezultirale u eliminaciji od oko 1,3 milijuna pani kartonskih kutija po godini.

Kad smanjivanje izvora rezultira s manjom uporabom istog materijala i bez drugih bitnih promjena, gdje je očita korist okoliša. Međutim značajno smanjenje izvora je postignuto s promjenom materijala, stilom pakiranja i drugim raznolikim značajkama. S takvim promjenama, pristup analizom životnog ciklusa je stvarno točan način procjene sveukupnog utjecaja promjene na okoliš. Takve procjene su kompleksne i koštaju, nema univerzalnog
načina kombiniranja utjecaja na okoliš u jedan koristan rezultat ili skup rezultata za vrednovanje troškova i koristi okoliša od dva ili više alternativna sistema pakiranja. Ipak brojne studije su sugestirale, ako se značajno manje materijala koristi sveukupni učinci na okoliš biti će pozitivni.

Može se dobiti značajno smanjenje izvora prelaskom sa staklenih ili metalnih na plastična pakiranja i prelaskom s krutih na fleksibilna pakiranja (koja najčešće sadržavaju plastiku). Dok se takva redukcija najčešće mjeri u težini, postoji i tipična redukcija volumena korištenog materijala za pakiranje.

Kad je Clorox prešao sa staklenih boca na plastične boce za umak za roštilj i dressing za salatu, nove PET boce su težile 85% manje nego stare staklene boce. Rezultat je bio smanjenje od gotovo 30 milijuna pani stakla godišnje. Uporaba kartonskih kutija se smanjila za 2 milijuna pani godišnje s obzirom da plastične boce zauzimaju manje mjesta. Naprimjer 18 oz staklena teglica za maslac od kikirikija teži 10,2 oz-a svaka. PET teglica istog kapaciteta teži samo 1,7 oz-a, redukcija od 83%.

Brzorastući tip pakiranja je samo stojeći tobolci koji su dizajnirani da uspavno stoe na policom i zamjene boce, limenke i kartone. Godine 1995. P&G su osvojili nagradu Flexible Pckaging Association Green Glove Award za uspavno pakiranje za deterdžent koji koristi 80% manje ambalaže nego kartonska kutija koja je zamjenjena, kao i inkorporiranje 25% postpotrošačkog materijala. Kao dodatak redukciji u volumenu pakiranja ili njege težine, takva pakiranja mogu ponuditi prednosti koje su manje očite. Naprimjer, aluminijfska folija uspavnog tobolaca za Whiskas hranu za mačke, koja je zamijenila limenku od čelika od 10 oza, pokazalo se da zahtijeva 30% manje vremena nego čelične limenke zbog toga što tetrapak može biti brže i ravnomjernije podgrijan. To se očituje u manjoj potrošnji energije za proces i u manjoj potrošnji vode za hlađenje.

Drugi način da se postigne redukcija količine pakiranja koje zahtijeva odlaganje je prijelaz s jednokratnog na pakiranje koje se može iznova koristiti. Često kod pakiranja za distribuciju uključuje prijelaz s kartona ili drva na plastiku. Pakiranje koje se može koristiti više puta zahtijeva inicijalno korištenje više materijala nego pakiranja za jednokratnu upotrebu. Međutim, kada se količina dostavljenog proizvoda uključi kao faktor, neto rezultat može biti vrlo velika redukcija količine pakiranja korištene za jedinicu dostavljenog proizvoda.
3.6. RECIKLIRanje

Pakiranja i sistemi pakiranja su dizajnirani ili modificirani, relativno male promjene ponekud čine razliku u tome hoće li pakiranje moći biti reciklirano na kraju svog životnog ciklusa ili ne. Prvo, u SAD-u većinom su samo plastične boce prihvaćene u programe prikupljanja za reciklažu koji su dostupni kupcima. Stoga ako pakiranje koje kupac kupi nije boc postoji mala vjerojatnost da će biti reciklirano. Nadalje velika većina programa za recikliranje sakuplja samo HDPE i PET boce.

Organizacije u zajednici razumljivo ne žele sakupljati materijale koje nemaju tržište. Iz aspekta okoliša, nema koristi od korištenja dodatnih resursa uključujući i energiju za odvajanje, sakupljanje i procesuiranje materijala ako na kraju idu na odlagalište. S druge strane potencijalni korisnici recikliranog materijala ne žele ulagati u razvijanje temeljnog znanja i promjene procesa potrebne ako neće imati pouzdan izvor recikliranog materijala koji je dostupan po razumnoj cijeni. U prošlosti je zakonodavstvo često bilo korišteno kao sistem brzog početka ili sa nalaganjem sakupljanja materijala za recikliranje, nalaganjem korištenja recikliranog materijala ili kreiranje financijskog poticaja za uspostavu sistema reciklaže i tržišta za reciklirane materijale.

• Ne pigmentirati prirodne HDPE boce kao što su naprimjer one za vodu i mlijeko, ne pigmentirati ili tonirati PET boce sa niti jednom bojom osim zelene

• Ne koristiti pigmentirane čepove na prirodnim HDPE bocama, napraviti da čepovi i mjere čepova HDPE boca budu kompatibilne s HDPE (osim aplikacija živih spojnika)

• Ne koristiti aluminijanske čepove, ne koristiti aluminijске brtve osim ako ih kupac može kompletno otkloniti

• Koristiti samo u vodi topljivo ljepilo na etiketama, koristiti etikete koje imaju specifičnu težinu manju od 1 na PET bocama, ne koristiti metalizirane etikete na bocama sa specifičnom težinom većom od 1, koristiti PVC i PVDC etikete samo na PVC spremnicima

• Ne printati direktno na ne pigmentirane boce, osim kodiranja datuma

• Napraviti sve slojeve višeslojnih boca dovoljno kompatibilnima tako da se materijal može prodati u visoke vrijednosti i na tržištu

• Ne koristiti PVC boce za proizvode koji se pakiraju u boce kao što je PET koje izgledaju kao PVC

The Association of Postconsumer Plastic Recyclers (APR), U.S. udruga razmjene koja predstavlja tvrtke koje recikliraju plastiku, također objavljuju listu dizajnerskih smjernica za plastične boce. Specifičan komplet smjernica su prezentirane za PET, prirodan HDPE, pigmentiran HDPE, PP i PVC boce. Smjernice uključuju:

• Bez papirnatih privitaka bilo koje vrste, bez PVC privatka bilo kakve vrste osim na PVC bocama, bez PET privatka na PVC bocama

• Bez metalnih zatvarača, PP ili HDPE/EVA zatvarača i zatvaranje košuljicama preferirano na PET bocama, HDPE, LDPE ili PP zatvarači preferirani na HDPE, PP i PVC bocama
Čahure i sigurnosne brtve trebale bi biti u potpunosti odvojive i s lakoćom uklonjive u sustavu konvencionalnog odvajanja, čahure koje se smanjuju su preferirane ako su čahure potrebne

- Ne pigmentirana ili zelena preferirana za PET, nepigmentirana preferirana za homopolimer HDPE, pigmentiranje preferirano za kopolimer HDPE, ne pigmentiranje preferirano za PP.

APR također upravlja Champions for Change programom koje tvrtke proizvode za kupce, tehnoloških tvrtki, dobavljača, konvertera i drugih da im testiraju novi sustav boca direktno sa komercijalnim „reciklatorima plastike“ s ciljem da:

- Pomognu omogućiti da novi materijali i dizajn budu kompatibilni sa postojećom infrastrukturom recikliranja plastike
- Pomognu promovirati tehnološki transfer tako da obnova plastičnih materijala ide u korak s novim dizajnima pakiranja
- Pomognu održati ekonomiju industrije koja snabđuje vrijedne post konsumerske obnovljene materijale tržištima diljem svijeta

Kao što je spomenuto, PET boce za pivo su uvedene u SAD-u, ljudi koji recikliraju su izrazili zabrinutost na nekoliko osnova: o efektu koje bi te boce imale na PET sistem recikliranja. Postojeći procesi koji su postavljeni tako da obrađuju zelene i prozirne boce, a mnoge nove boce su bile žute boje, boje jantara. To je značilo u mnogim slučajevima, da bi procesi trebali biti modificirani za odvajanje dodatne boje ili bi postojeći proizvodni tok bio kontaminiran i s tim smanjenje vrijednosti. Ako bi jedan tok proizvodnje bio PET boje jantara, proizvođači su bili zabrinuti da ne bi bilo tržišta za taj materijal. Drugo, boce sadržavaju aluminijski čep. Mnoge boce bezalkoholnog pića se sakupljaju za recikliranje sa čepom, isto bi bilo i za pivske boce. Kada je sistem za recikliranje PET boca za bezalkoholno piće započet sve boce su imale aluminijske čepove. Visoko kvalitetan recikliran PET zahtjeva da kontaminacija aluminijem bude održana na ekstremno niskoj razini. Odvajanje aluminija od PET-a ispostavilo se kao jako težak aspekt poslovanja sustava za reciklažu. Izmjena dizajna na PP čepove, iako nije napravljena sa ciljem da poboljša mogućnost reci-

Kad je Heinz uveo PET boce kečapa tvrtka je posvetila posebnu pažnju kako bi osigurali da boce budu kompatibilne sa postojećim sustavom za recikliranje PET boca za bezalko-holno piće. Boca se proizvodi sa strukturom od pet slojeva (PET/EVOH/PET/EVOH/PET). EVOH je dužan pribaviti dovoljnu barijeru kisika za proizvod. U nedostatak vezivnog sloja između PET i EVOH uzrokuje odvajanje slojeva kada su boce polegnute i prane tokom recikliranja. EVOH materijal najčešće bude uklonjen tokom procesa pranja i ispiranja. Ma-li iznos koji ostane nije štetan osobinama PET-a.

U prosincu 2002., novi izvještaj Plastic Redesign Project je pregledao efekt inovacije no-vog plastičnog pakiranja na recikliranje plastičnih boca s posebnim fokusom na to hoće li trendovi u dizajnu boca dalje narušiti cijenu koja je plaćena lokalnim programima recikli-rajanja za plastične boce zbog troška u rukovanju s novim strukturama. Spomenuto kao promjene dizajna koje su olakšale recikliranje plastike je eliminacija baznog čepa u 2L bocama bezalkoholnog pića, zamjena PET za PVC boce, zamjena EVOH za PVC košuljica u zatvaračima za gazirana pića te razvoj LDPE sakupljujuće etikete da zamjene naljepljene etikete na bocama mlijeka. Istaknuta je velika briga za povećanjom uporabom drugih boja osim zelene kod PET boca i porast PET boca koje ne sadrže PET komponente da povećaju značajke barijere. Oba razvoja povećavaju trošak procesuiranja prikupljenih plastičnih boca i također utječu na vrijednost obnovljenog materijala. Studije procijenjuju da posrednik preradivač košta da ručno razdvaja druge boje od prozirnih i zelenih PET boca oko 6 centi po panu i ako je mehaničko odvajanje dostupno trošak bi bio oko 1,5 centi po panu. Vrijednost zelene PET pahuljice prosječno je 18.9% niža od prozirne PET pahu-ljice. Vrijednost novih boja naprimer žuta za boce piva ili plava za boce vode, bila bi niža približno 1,1 cent po panu manje nego prozirna.

3.7. PROCJENE ENERGIJE I ZAŠTITE OKOLIŠA

Temeljna evaluacija utjecaja na okoliš alternativnih tipova sistema pakiranja zahtjeva proc-jenu životnog ciklusa LCA koji uzima u obzir sve utjecaje „od kolijevke do groba“. Među-
tim sve takve analize trebaju biti obuzdane sa nizom granica i izbor granica mogu učiniti razliku u zaključcima koji se izvuku. Što su sve obuhvatnije i detaljnije analize veći je i trošak. Nadalje, brojne pretpostavke su potrebne, posebno kada idemo od inventara životnog ciklusa koji dokumentira unose i učinak koja opisuje efekte tih unosa i učinaka (ulaznih i izlaznih čimbenika). Trud je usko vezan za vrijednosne prosudbe o odnosu ekvivalencije uvelike drukčijih tipova predmeta koji su listirani na inventaru. Čak i na popisu životnog ciklusa procjene će varirati sa podacima koji se koriste. Neke studije se odlučuju za korištenje samo javno dostupnih podataka i često su kritizirani na temelju nedavnih poboljšanja u procesima koji nisu priznati. Drugi koriste industrijske izvore za posljednje podatke da odraze ta poboljšanja i kritizirani su zato što podatci nisu dostupni javnom uvidu. U nekim Europskim zemljama Vladina politika zahtijeva uporabu modela LCA baziranog na računalu odobrenom od vlade, koji možda ne priskrbljuje sve bitne podatke i pretpostavke za nezavisnu/neovisnu procjenu. Stoga je upotreba LCA teoretski jedina u potpunosti opravdana metoda za procjenu okolišnih posljedica od strane odluka u praksi još uvijek treba značajan razvoj prije no što može postati koristan alat. Kao posljedica bilo je znatnog interesa u razvoja metode prečaca koji dok ne procjenjuje sve utjecaje na okoliš od strane alternativa pakiranja, može lakše biti uzet za rad za vođenje u donošenju ispravnih odluka za okoliš. Studija od strane Franklin Associates 1992. godine je ispitala energetske potrebe plastike i njihove alternative kod materijala za pakiranje. (3) Studija u The Nederlands 1992. godine procjenili su utjecaj polistirena, papira i porculanskih šalica za kavu na okoliš. Šalice su napravljene od 50:50 mješavine polistirena (HIPS – High Impact Polystyrene) visokog utjecaja na okoliš i polistirena za opću upotrebu, ekstrudirane i termoformirane. Transport granuliranog polistirena u objekte konverzije i šalica do trenutka njihove uporabe je također procijenjen. Utjecaj odlaganja je temeljen na 60% deponija i 40% paljenja.

The Association of Plastics Manufacturers in Europe, Udruženje proizvođača plastike (APME) je proizveo niz eko profiliranih izvještaja o raznovrsnim plastikama, uključujući materijale pakiranja. APME je prisvojio izraz eko profil od kada analiza ide samo do točke prodaje i ne pokriva odlaganje. Izvještaj ne uključuje utjecaje ni poboljšane dijelove procjene životnog ciklusa.
Uporaba energije je distribuirana kao što je pokazano na slici 9. Udio energije korištene u proizvodnji boca, 77.3% je korišteno u oblikovanju boca. Podsjetnik je korišten u hlađenju vode, skladištenju, prijenosu, rukovanju smolom i uklanjanju ostataka na kori odljevka koji su ostali između rubova kalupa.

Slika 8: Distribuirana proizvodnja energije

Procjena životnog ciklusa raznih alternativnih sistema pakiranja jogurta objavljena je od strane Center for Sustainable Systems na Sveučilištu Michigan. Studija je procijenila dizajn životnog ciklusa na nekoliko alternativnih pakiranja za mlijeko.

Sve je veća kontroverza oko uporabe plastifikatora u materijalima plastičnih pakiranja i udruživanje tih spojeva, a posebno onih iz obitelji ftalata sa reproduktivnim anomalijama i rakom. Za pakiranje plastičke ove brige utječu prvenstveno na PVC i PC. Godine 2000. Vladina komisija je zaključila da postoji ozbiljna briga da DEHP u vinil medicinskim uređajima može oštetiti reproduktivne organe kritično bolesnih i prerano rođene muške djece izložene tokom medicinskog uređajima, kao i briga o efektima od izloženosti DEHP-u trudne majke i drugo izlaganje DEHP-u tokom prvih nekoliko godina djetetova života. Moguće opasnosti od šest drugih ftalata koji se koriste u plastifikatorima u PVC-u su rangirane puno niže. PVC vrećice koje se koriste za krv, intravenozne tekućine, vječnu hranu i parenteralnu ishranu, zajedno sa cijevićama za krv i kisik i respiratorne maske su među izvorima DEHP izlaganju na jedinici intenzivnog liječenja. Alternativni materijali su dostupni za većinu ovih primjena ali su često skuplje. Poliolefine, često bazirane na PP, polako zamjenjuju PVC u sistemu medicinskih vrećica uključujući i cijevice u dijelovima Europe iako nisu česte u općoj upotrebi u SAD-u.

3.8. ZAKONODAVSTVO I REGULACIJE

Kao što je spomenuto, zakonodavstvo i regulacije su korištene da se smanji utjecaj pakiranja i proizvoda na okoliš, posebno njihov utjecaj na sustav odlaganja, povećavanjem recikliranja i uporabom recikliranog sadržaja, također omogućavanjem poticaja za redukciju izvoza. Plastično pakiranje je česta meta kod takvih regulacija. Pristup koji prevlada globalno je provedba filozofije da bi subjekt donošenja odluka o pakiranju trebao biti držan odgovornim za upravljanje otpadom pakiranja i trebao bi zahtijevati ciljane nivo recikliranja. Ideja je različito zvana kao proizvođač plača, proizvođačeva odgovornost ili produžetak odgovornosti proizvoda (proizvođača EPR). Njena prva veća manifestacija je bila u Njemačkoj.

Germanys Ordinance on Avoid of Packaging Waste (Njemačka Uredba o sprječavanju ambalažnog otpada) zahtijeva da proizvođači i distributeri uzmu natrag i recikliraju po novno upotrijebe određeni postotak cjelokupnog materijala za pakiranje ili sudjeluju u osnovnim nacionalnim programima za upravljanje otpadom. Za distribuciju pakiranja, organizacije treće strane su postavljene za rukovanje sa uzetim natrag i recikliranjem iskorištenih pakiranja. Za pakiranja robe na malo, industrija je osnovala Duales System Deu-
tschland (DSD) da sakuplja, sortira i reciklira ambalaži iskorištenu od strane potrošača. Sudjelovanje u ovom sustavu se prepoznaje označavanjem pakiranja sa simbolom zelene točke (green dot). (3)

Tvrtke koje sudjeluju plaćaju naknadu Duales System koja varira prema količini i tipu materijala pakiranja. Godine 1994. cijena za plastiku je bila 2,95 njemačkih marki po kilogramu u odnosu na 1,50 za aluminij, 0,40 za papir i karton te 0,15 za staklo. Također postoji naknada po komadu koja se doda na naplatu baziranu na težini.

Potrošači su ili stavljali ambalažu koja je imala zelenu točku u žute vrećice ili žute kante koje su se sakupljale na rubu nogostupa ili su unosili pakiranja na lokaciju za odlaganje u blizini njihova doma. Tvrtke koje ne sudjeluju u Green Dot sistemu po zakonu moraju uzeti natrag i reciklirati vlastita iskorištena pakiranja. Potrošači imaju pravo vratiti takvo pakiranje preprodavaču kad su kupili robu.

Budući da je cijena sudjelovanja u Green Dot sistemu uvjetovana sa tipom i količinom materijala pakiranja koji se koristi za proizvod, tu je poticaj za tvrtke da smanje uporabu pakiranja. Naprimjer, Njemačka pekara prešla je sa 160 na 130 µm film i reducirala volumen pakiranja za oko 20%. Rezultat je bila ušteda okolišne naknade od oko 25%, i sveukupno uštedu od 100 000$.

42

Oregon zahtijeva uporabu 25% postkupčevog recikliranog materijala u spremnicima krute plastike osim ako je reciklažna stopa za plastične spremnike u državi najmanje 25%. Ima
izuzetaka za hranu i medicinsko pakiranje, izvor smanjenog spremnika i ponekih drugih. Tvrke također mogu pristati odredbu stope recikliranja ako su svi spremnici određenog tipa ili marke reciklirani po stopi od 25%. Budući da je zakon stupio na snagu, stopa recikliranja RPC-a (Rigid Plastic Containers, Spremnici od krute plastike) u državama je bila i preko minimuma od 25%, tako da modifikacije pakiranja nisu bile potrebne.

4. ZAKLJUČAK

Ambalažni materijali i njihov otpad imaju mnogobrojne štetne utjecaje na okoliš. Neki od tih utjecaja su povezani s vađenjem sirovina od kojih se ambalaža proizvodi. Zatim su povezani sa samim procesom proizvodnje ambalaže, sakupljanjem ambalažnog otpada te naknadnim odlaganjem i zbrinjavanjem. Ambalaža tako može sadržavati neke opasne supstance kao što su PVC ili teški metali koji se mogu pretvoriti u rizik za okoliš.
Zadnjih desetljeća potrošnja i proizvodnja rastu vrlo brzo, a ambalažni otpad velike proizvodnje i potrošnje, koncentriran na relativno malom mjestu, nije moguće eliminirati bez specijalnih zahvata. Ekološko pitanje izazvano ambalažnim otpadom postaje sve ozbiljnije.

Ambalažna industrija je veliko područje koje troši ogromne količine prirodnih izvora (sirovina i energije) u cilju zadovoljenja gotovo nezasitnih zahtjeva postavljenih od svjetskih marketinških i distribucijskih sustava.

Metoda „procjene životnog ciklusa“ razvijena je prije nekoliko godina kako bi se uspostavili kriteriji koji određuju utjecaj pojedinog proizvoda na okoliš. Pomoću LCA metodologije moguće je uspostaviti i analizirati direktnе i indirektnе ekološke utjecaje operacija vezanih za proizvodnju, korištenje i odlaganje proizvoda.

Održivost je samo početak. Ne želimo se održati, želimo napredovati. Od iznimnosti je važnosti da transformiramo sistem komunikacije da smanjimo štetu koja se nanosi okolišu. Naginjemo prema pozitivnom potencijalu koji dizajneri mogu osloboditi u vlastitoj praksi, u poslovanjima klijenata i u dijelima ljudi koji primaju naše poruke.

5. LITERATURA

6. Mike Stones, Packages should go green to keep profit sin the black, dostupno na: http://www.foodproductiondaily.com/Packaging/Packagers-should-go-green-to-keep-profits-in-the-black, 28.11.2011.

30. Emma Seigel, Lisa Barlow, Biodegradable Plastics, dostupno na: http://docs.google.com/viewer?a=v&q=cache:qZJngvhyPJJE:envs.colorado.edu/uploads/undergrad/Part_2.pdf+biodegradable+plastics&hl=hr&gl=hr&pid=bl&srcid=ADGEESjqKDnoDzrVW8nRikOKGBQnDliydrctrpxo9t1PAKoesPjkjVbX_nZRx9PX40e32YQbnTszycY7MVqK6gJaF1g_7ALkJ8jaC7ed0MPBeaMP0Y1jiAajmYix_b1XfZkuSu&sig=AHIEtbRfzene1b4FQj29BEu0FodPeS7Cdjw, 26.01.2012.